

Enzymatic Assay of Elastase

DESCRIPTION:

This procedure may be used for Elastase products using SucAla₃-pNA as the substrate.

The continuous spectrophotometric rate determination (A_{410} , Light path = 1 cm) is based on the following reaction:

where:

 $SucAla_3-pNA = N-Succinyl-Ala-Ala-Ala-p-nitroanilide$

 $SucAla_3 = N-Succinyl-Ala-Ala-Ala$

pNA = p-Nitroanilide

Unit Definition – One unit of Elastase will hydrolyze 1.0 μmole of N-succinyl-L-Ala-Ala-*p*-nitroanilide per minute at pH 8.0 at 25 ° C.

PRECAUTIONS:

Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

REAGENTS AND EQUIPMENT REQUIRED:

Trizma base

N-Succinyl-Ala-Ala-Ala-p-nitroanilide

PREPARATION INSTRUCTIONS:

Use ultrapure water (\geq 18 M Ω xcm resistivity at 25 $^{\circ}$ C) for the preparation of reagents.

Buffer (100 mM Tris HCl, pH 8.0 at 25 $^{\circ}$ C) - Prepare a 12.1 mg/mL solution of Trizma base in ultrapure water. Adjust the pH to 8.0 at 25 $^{\circ}$ C with 1 M HCl.

Substrate Solution (4.4 mM SucAla₃-*p*NA Solution) -Prepare 2 mg/mL solution of N-Succinyl-Ala-Ala-Ala-*p*-nitroanilide in Buffer.

Enzyme Solution (Elastase)-Immediately before use, prepare a solution containing 0.2 - 0.5 unit/mL of Elastase in cold (2-8 °C) buffer.

PROCEDURE:

In a 3.00 mL reaction mix, the final concentrations are 96.7 mM Trizma, 0.29 mM N-Succinyl-Ala-Ala-Ala-P-nitroanilide, and 0.02 - 0.05 unit of Elastase.

1. Pipette the following reagents into suitable cuvettes:

Reagent	Test (mL)	Blank (mL)
Buffer	2.70	2.80
Substrate Solution	0.20	0.20

2. Mix by inversion and equilibrate to 25 $^{\circ}$ C. Then add:

Reagent	Test (mL)	Blank (mL)
Enzyme Solution	0.10	_

3. Immediately mix by inversion and record the increase in A_{410} for \sim 5 minutes. Obtain the \triangle A_{410} /minute using the maximum linear rate for both the Test and Blank using a minimum of 4 data points over a one minute time interval.

RESULTS:

Calculations

1.

Units/mL enzyme =
$$\frac{(\Delta A_{410}/min \text{ Test} - \Delta A_{410}/min \text{ Blank}) (3.00) (df)}{(8.8) (0.10)}$$

where:

3.00 = Total volume (mL) of assay

df = Dilution factor

8.8 = Millimolar extinction coefficient of p-Nitroaniline at 410 nM at pH 8.0

0.1 = Volume (mL) of Enzyme Solution used

2.

$$Units/mg \ solid = \frac{\text{units/mL enzyme}}{\text{mg solid/mL enzyme}}$$